skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Henke, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. The High-resolution (6 kilometer (km)) Ice-Ocean Modeling and Assimilation System (HIOMAS) is used to simulate the evolution of sea ice for the Arctic Ocean and adjacent areas, including the Barents Sea, Norwegian Sea, Greenland Sea, Baffin Bay, and waters along Northwest Passage, over the period 2010 to 2069. The hindcast and future forcing over the period is from one of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models, the CNRM-CM6-1-HR global climate model (GCM) run at the National Center for Meteorological Research, Météo-France and CNRS Laboratory (CNRM). Monthly mean sea ice thickness (meters (m)) is provided over 2010 to 2069 in NETCDF file format, with model grid information such as latitudes and longitudes of model grid cells included. I have archived future projection of monthly mean sea ice thickness files over 2010 to 2069 in https://pscfiles.apl.uw.edu/zhang/HIOMAS_6km/. The files are in netcdf format, which are created by running HIOMAS using the future projection forcing of the CNRM-CM6-1-HR GCM run conducted at the National Center for Meteorological Research, Météo-France and CNRS Laboratory (CNRM). Martin interpolated the forcing onto the new, expanded HIOMAS grid. There is a readme.txt file. 
    more » « less
  3. Abstract Declining Arctic sea ice over recent decades has been linked to growth in coastal hazards affecting the Alaskan Arctic. In this study, climate model projections of sea ice are utilized in the simulation of an extratropical cyclone to quantify how future changes in seasonal ice coverage could affect coastal waves caused by this extreme event. All future scenarios and decades show an increase in coastal wave heights, demonstrating how an extended season of open water in the Chukchi and Beaufort Seas could expose Alaskan Arctic shorelines to wave hazards resulting from such a storm event for an additional winter month by 2050 and up to three additional months by 2070 depending on climate pathway. Additionally, for the Beaufort coastal region, future scenarios agree that a coastal wave saturation limit is reached during the sea ice minimum, where historically sea ice would provide a degree of protection throughout the year. 
    more » « less
  4. Abstract The Arctic region is experiencing significant changes due to climate change, and the resulting decline in sea ice concentration and extent is already impacting ocean dynamics and exacerbating coastal hazards in the region. In this context, numerical models play a crucial role in simulating the interactions between the ocean, land, sea ice, and atmosphere, thus supporting scientific studies in the region. This research aims to evaluate how different sea ice products with spatial resolutions varying from 2 to 25 km influence a phase averaged spectral wave model results in the Alaskan Arctic under storm conditions. Four events throughout the Fall to Winter seasons in 2019 were utilized to assess the accuracy of wave simulations generated under the dynamic sea ice conditions found in the Arctic. The selected sea ice products used to parameterize the numerical wave model include the National Snow and Ice Data Center (NSIDC) sea ice concentration, the European Centre for Medium‐Range Weather Forecasts (ECMWF) Re‐Analysis (ERA5), the HYbrid Coordinate Ocean Model‐Community Ice CodE (HYCOM‐CICE) system assimilated with Navy Coupled Ocean Data Assimilation (NCODA), and the High‐resolution Ice‐Ocean Modeling and Assimilation System (HIOMAS). The Simulating WAves Nearshore (SWAN) model's accuracy in simulating waves using these sea ice products was evaluated against Sea State Daily Multisensor L3 satellite observations. Results show wave simulations using ERA5 consistently exhibited high correlation with observations, maintaining an accuracy above 0.83 to the observations across all events. Conversely, HIOMAS demonstrated the weakest performance, particularly during the Winter, with the lowest correlation of 0.40 to the observations. Remarkably, ERA5 surpassed all other products by up to 30% in accuracy during the selected storm events, and even when an ensemble was assessed by combining the selected sea ice products, ERA5's individual performance remained unmatched. Our study provides insights for selecting sea ice products under different sea ice conditions for accurately simulating waves and coastal hazards in high latitudes. 
    more » « less
  5. Ping Wang, Elizabeth Royer (Ed.)
    Arctic storm surge events have a distinct character, and their impact on the coast is unique compared to a non-Arctic event. On the one hand, Arctic peak wind speeds rarely reach hurricane strength (74 mph, 64 knots or greater). And pressure drops associated with Arctic storms are small compared to ones in the tropics. More importantly, the impact of an atmospheric storm on the ocean and on the coast is entirely dependent on the season. If a large storm strikes during the winter or when the ocean is ice-covered, the storm will generate negligible waves and surge, and it will not generate erosion or coastal flooding. On the other hand, if a large storm strikes when the ocean is partially ice-covered (e.g., 50% covered), surge may be enhanced relative to an ice-free ocean, potentially leading to greater coastal flooding. 
    more » « less